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Activity-Based Models and ACS Data: 
What are the implications for use? 

 
D.A. Niemeier 

 

Introduction 

The Census is transitioning to the American Community Survey (ACS) for replacement of the 

decennial census sample. The ACS is a new continuous survey method that is expected to take 

the place of the Decennial Census survey by 2010. As a continuous survey, the ACS will send 

out about 250,000 surveys a month to households across the country (U.S. CB, 2005). The U.S. 

Census Bureau hopes that the ACS will provide accurate data about the U.S. population, and in a 

manner that will provide planners and decision-makers with information more timely 

information than can be achieved by the Decennial Census. The continuously collected data from 

the ACS will be averaged over three year periods so that the total sample size will provide a 

statistically accurate representation of the population. The highest geographic resolution 

available for the ACS data is expected to be the traffic analysis zone (TAZ) level. However, it is 

not entirely clear whether or not the sampling rate at the TAZ level is large enough to provide 

statistically accurate information. Therefore, the highest reliable geographic resolution available 

for most areas will most likely be at the tract level.  

 

The purpose of this paper is to evaluate the ACS in terms of newer tour- and activity-based 

models. The paper begins with a review of the types of data currently used in these models. The 

paper then reviews the state of the practice with respect current tour and activity-based models. 

In particular, the ways in which current data are used is highlighted. From this review, a 

discussion of the points raised in the literature related to using census data in activity-based are 

reviewed with suggestions for additional research. 
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PUMS Data Sources  

Public Use Microdata Samples (PUMS) is a database of microdata collected by United States 

Census Bureau (Source: Online Access:  http://www.census.gov/acs/www/Products/PUMS/). 

They are demographic microdata available from Decennial Census (i.e., Census of Population 

and Housing) and American Community Survey. The U.S. Census Bureau also collects and 

provides microdata from Current Population Survey, American Housing Survey, Survey of 

Income and Program Participation and Survey of Program Dynamics. 

 

PUMS files are online accessible files (or files provided in CD-ROMs or tapes) which show all 

responses made on individual questionnaires. Thus, different from summary data, they provide 

information about each housing unit and each individual in those housing units. Each PUMS file 

provides record for 1 in 1000, 1 % and 5% samples of the housing units in the United States and 

persons in those housing unit (Source: Online Access: 

http://www.ciesin.org/datasets/pums/pums-home.html) . Each PUMs file provides records and at 

the geographic levels described below.  

 

 The 5% sample includes data for states and various subdivisions of states called Public 

Use Microdata Areas (PUMAs) which have population of at least 100,000. These 

PUMAs are usually based on counties. They can be whole counties, groups of counties. If 

a county has a population more than 200,000 persons, PUMAs can represent parts of 

these counties. None of these PUMAs on the sample crosses state lines.  
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 The 1% sample includes data for metropolitan/nonmetropolitan areas, and contains 

PUMAs which were made from whole central cities, complete Metropolitan Statistical 

Areas (MSAs) or Primary Metropolitan Statistical Areas (PMSAs) if these spatial units 

have populations less than 200,000. If these spatial unit have populations higher than 

200,000 persons, 1% PUMAs can represent parts of central cities and MSAs/PMSAs. 

 

The smallest spatial unit that can be represented in PUMS data files are parts of central cities or 

parts of Metropolitan Statistical Areas. However, it should be noted that the data set which will 

represent this spatial unit will be a 1 in 1000, 1% sample of the total households. The types of 

information collected from the PUMS data include a range of population characteristics a few of 

which are income, social status, education, ethnicity, household composition, etc.   

 

ACS PUMS 

The Public Use Microdata Samples (PUMS) provided for the ACS are publicly available for the 

years 1996 through 2003. The data provide samples from the ACS at the individual level, 

meaning that data is provided for individual respondents with all identifying information 

removed to protect the respondent’s confidentiality. The PUMS data is provided without the 

same spatial resolution that can be obtained from the standard ACS tabulations, but may allow 

users not requiring high spatial resolution to observe relationships among variables that are not 

provided by other Census Bureau products. 

 

The ACS PUMS data for “place of work” is provided at the state level within the U.S. For place 

of work outside of the U.S., the data is coded by the country where the respondent works. The 
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ACS PUMS data is not particularly useful to researchers requiring data provided at a geographic 

area smaller than the state level (U.S. CB, 2005). 

 

Census STF3A 

The STF3A contains data for the Decennial Census respondents who received the Long-Form 

Questionnaire, which is about 1 in 6 housing units nationwide. These data are publicly available 

for the 1980, 1990 and 2000 Decennial Census surveys. The STF3A files contain summary data 

in the form of counts or aggregate data in the form of means. The STF3A data files also contain 

nested data, meaning that data from the lower levels of geographic distinction (e.g. block groups) 

are aggregated and presented again at a higher level of distinction (e.g. tracts) (ATS, 1996).  

 

The highest geographic resolution available for the STF3A data is at the block group level. Block 

groups are unique within tracts, but may be segmented by other geographic boundaries, such as 

place (ATS, 1996).  

 

STF3A PUMS 

The STF3A PUMS provides data at the individual level for about 5% of the respondents for a 

given area (ATS, 1996). The PUMS data is useful for researchers who do not require a high level 

of geographic resolution or large sample sizes, and are interested in information that is not 

explicitly provided by the STF3A data. The highest level of resolution provided by the STF3A 

PUMS is place. However, the data is often only provided in lower spatial resolution such as by 

county or groups of counties (ATS, 1996).  
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Census Transportation Planning Package (CTPP) 

The Census Transportation Planning Package (CTPP) provides comprehensive tabulations of 

households, persons and workers and is a cooperative effort of State DOTs and AASHTO 

(Source: Online Access: http://www.fhwa.dot.gov/ctpp/about.htm). It is summarized data by 

place of residence, place of work, and trips made between home and work. It is also known as 

the “Journey to Work” Package (Source: Online Access: http://www.trbcensus.com/). The data 

can be used to evaluate existing conditions, develop travel demand models and analyze 

demographic data. The CTPP data is published for each state and county. In most cases, data is 

limited to The smallest spatial unit that can be represented in CTPP data files are counties. The 

data will represent all the population in the county, however, these will be aggregated values.  

 

Activity-Based Modeling and Data Needs 

The traditional four-step travel demand modeling processes have long dominated urban 

transportation planning approach, with reasonably effective applications for regional travel 

forecasting at the aggregate level. However, they have two main disadvantages that are well 

recognized and discussed by both researchers and practitioners. First, the conventional travel 

demand modeling method is trip-based; that is, an individual trip is the analysis unit, with the 

result being that the underlying behavioral causes are not well modeled. This theoretical 

deficiency results in a lack of interaction between trips and activities (see McNally, 2000 for 

details) and provides a somewhat weak foundation in modeling practice for evaluating 

transportation control measures (Algers et al., 2001). Second, the traditional travel demand 

modeling method is static and trips are typically aggregated (e.g., peak and non-peak periods). 



 6

Highly aggregated modeling results can be insensitive to finer-scale changes of traffic 

conditions, such as network congestion during a particular hour (Vovsha et al., 2004). 

 

One of the ways in which the disadvantages of traditional four-step processes are being 

addressed is through activity-based modeling, in which a person’s travel is treated as a derived 

demand from activity participation over time and space (Bhat and Lawton, 2002). This approach 

represents an advance over traditional travel demand models because it not only recognizes the 

interactions among a series of individual trips, but also captures the connections between trips 

made by different household members (RDC Inc., 1995). Since the 1970’s, a number of activity-

based modeling packages have been developed with varying success. Some of the more popular 

examples are shown in Table 1. The MPOs using these activity-based travel demand modeling 

systems include Portland, San Francisco County, New York City, Columbus and Atlanta 

(Vovsha et al., 2004). 
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Table 1. Activity-Based Travel Demand Modeling Packages 
Model Developer Date Since Model Description Practical Application 

ALBATROSS Arentze and Timmermans 1998 A rule-based approach using decision tree 
formalism to model heuristic choice. 

Case study for the Rotterdam region 
in Netherlands 

AMOS Kitamura, et al., RDC, Inc. 1995 Specific search rules are used for finding feasible 
schedule adjustment. 

AMOS survey and TDM policy 
analysis applied to Washington, D.C. 
area (MWCOG) 

AURORA Timmermans, et al. 2001 A utility-based model of activity-travel 
rescheduling behavior. N/A 

CEMDAP Bhat, et al. 1999 Modeling a series of activity-travel generations for 
workers (CATGW) and nonworkers (CATGNW). N/A 

COBRA Wang and Timmermans 2000 A utility maximizing method based on nested logit 
model. N/A 

Day Activity 
Schedule Model Bowman and Ben-Akiva 1994 Nested logit model used for estimating individual’s 

multidimensional choice of daily activity patterns. 
Portland Day Activity Schedule 
Model System 

GISICAS Mei-Po Kwan 1997 Scheduling an activity agenda in a GIS-based 
system. N/A 

HAPP Recker 1995 Modeling household’s activities based on a mixed 
integer mathematical program. N/A 

MASTIC Dijst, et al. 1995 Identify action space based on a space-time prism. N/A 

MORPC Model MORPC and PB Consult 2001 Tour-based approach for travel demand modeling 
using a series of choice models. 

Mid-Ohio Region (MPO of 
Columbus) Travel Demand Modeling 

PCATS Kitamura and Fujii 1997 Maximizing utilities with considering different 
types of constraints. Osaka and Kyoto, Japan 

PETRA Fosgerau 1998 Nested logit approach to model activity chains. N/A 

Portland Model Portland Metro and PB Consult 1999 Based on Bowman and Ben-Akiva’s Day Activity 
Schedule Model. 

Portland Metropolitan Travel 
Demand Modeling 

SCHEDULER Garling, et al. 1989 Choosing a set of activities in the schedule based 
on a heuristic search. N/A 

SMASH Ettema, et al. 1995 Sequential scheduling process based on nested logit 
model and Monte Carlo simulation. N/A 

STARCHILD McNally and Recker 1986 Predict choice between alternative activity patterns 
based on multinomial logit models. 

Case studies based on activity data 
from Orange County and Portland 

Source: adapted and extended from Timmermans, 2001 
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In general, activity-based travel forecasting begins with the generation of synthetic households 

that are then used to populate disaggregate models. The typical process is to first create a socio-

economic distribution of households by analysis zones, which are usually either traffic analysis 

zones or census block groups. The distribution of households by socio-economic characteristics 

is constructed using representative sample data such as the Census STF-3A or the 5% PUMS.   

 

For example, one of the first tour-based microsimulation models created was for the San 

Francisco County Transportation Authority (SFCTA 2001). In this modeling framework, a 

synthesized population for San Francisco is used as direct input for models related to vehicle 

availability, tour generation, time of day choice, and destination and mode choice. The 

synthesized population relies on three primary data sources: the PUMs, socioeconomic and 

employment data collected by the county, and socioeconomic data compiled by the Association 

of Bay Area Governments (ABAG). 

 

When populations are synthesized using census and other data, typically the way in which the 

distribution is established is by using what are known as control variables. For example, in the 

San Francisco County model, control variables are defined as household size and number of 

workers (9 categories), household income (4 categories), and age of head of household (3 

categories), giving a total of 108 possible dimensions over which the population distribution 

could be synthesized. It is important to note that all of the categorizations used for the control 

variables are consistent with the census tables available in the CTPP. 
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The use of control variables is common. Other activity-based models using control variables to 

establish the baseline population distribution include Transims (which reflects the Portland 

metropolitan region), the Atlanta Regional Commission model, the Comprehensive Econometric 

Microsimulator for Daily Activity-Travel Patterns (Bhat et al 2003) and the Mid-Ohio Regional 

Planning Commission model (PB Consult 2005).  

 

The control variables establish the marginal distributions and an interative procedure for fitting 

the proportions is used to derive the number of households in each of the cells. Most activity-

based models using synthesized households start with a distribution supported by aggregate 

census units (e.g., the Public Use Microdata Areas). Once a joint distribution is established, an 

allocation to TAZ or census blocks is performed, and for each cell a sample of households is 

drawn randomly from census data, usually the 5% PUMS. The types of variables used for 

controls include income, household size, number of workers, children, gender, and race at the 

household level and age, race (e.g., Hispanic versus not), and employment at the person level.  

 

To understand how census data are used in the basic activity-based modeling, it is useful to look 

at a couple of fairly recently developed population synthesizers. By way of a first example, 

consider the MORPC travel demand model (PB Consult 2005). In this model, the population is 

synthesized by TAZ using socioeconomic variables relevant to the travel model and average 

zonal characteristics. The input parameters include total population, total number of households, 

total labor force, and average household income. The output variables associated with each 

household include household income group, status of adult household members (e.g., full time 

workers, part-time workers, etc), and household children by age category.  
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The population is synthesized in two steps (Figure 1). First, a distribution of households is 

created using a set of controlled variables represented as either zonal totals or averages provided 

as input from the land use, socio-economic modeling. This distribution is then converted to a 

“list” of household with a set of additional variables added to the characteristics; the additional 

variables are uncontrolled in the sense that each synthetic household is matched to an identical 

household in PUMS. 

 

 
  Figure 1. MORPC Population Synthesis Steps (Source: PB Consult 2005) 
 
 
In the first step, the PUMS data is used to provide a multi-dimensional seed distribution of 

households in each PUMA. In the second step, the uncontrolled variables are added by 

identifying similar households from PUMS corresponding to the dimensions of controlled 

variables and adding the relevant uncontrolled variables. This same procedure is undertaken for 

all households in the PUMA. 
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The CEMDAP model uses somewhat the same approach for generating the household 

population. To see how census data are currently used, consider the derivation of “medium-term” 

activity travel patterns (Bhat et al 2002). For this portion of the activity-based modeling, the 

PUMA was the Metropolitan Statistical Area, groups of MSAs, parts of MSAs for metropolitan 

areas larger than 100,000 and groups of non-metropolitan areas.  

 

The estimation of middle-term activity patterns relies on several data sources: an activity survey, 

Census files, and the PUMS and none of the data provide the full range of information ideally 

needed for the modeling. The census data (SF1 and SF3) provide only marginal population 

distributions. This requires that an additional algorithm is available to estimate the eventual 

multi-dimensional population distribution serving as the basis for the synthesis. The Iterative 

Proportional Fitting (IPF) process is used to create the multi-dimensional population distribution.  

 

IPF uses a seed matrix and marginal totals (constraints) to derive cell estimates. If the constraints 

are internally consistent (i.e., all sources sum to the same totals), the IPF procedure will 

converges to a unique solution. As Bhat et al note, when data is culled from a number of 

different sources with varying levels of aggregation (or category collapsing), the assumption that 

row-column totals will equal becomes a limiting factor in the method’s application. Nonetheless, 

the method is widely used to develop the multi-dimensional population distributions used in the 

population synthesis process. 
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In the CEMDAP application, the IPF is used to produce output file for the 1032 census tracts in 

the 11-county Dallas Fort-Worth region (Figure 2). For each census tract, a synthesized 

household distribution by household type is produced, where household types are those defined 

in the PUMS. For example, the output file for county 113, tract 1 will comprise 7844 household 

types (rows) corresponding to the households in the PUMS data from county 113, tract 1. Once 

these files have been established, a second step is performed, which expands the data so that the 

representative number of households are produced for each household-type distribution and 

assigning each household to a traffic analysis zone. This step is required because most travel 

model zone systems will differ from those used by the census. In the case of Dallas-Ft. Worth 

(the primary application of CEMDAP), there were 919 traffic analysis zones and 1032 census 

tracts (87,086 blocks). For this second step, the distribution files produced in the first step were 

needed, and the PUMS person files by county, the Census 2000 tract and block level data and a 

block-traffic zone equivalence map were required.  
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   Figure 1. CEMDAP Population Synthesis Steps (Source: Bhat et al 2003b) 
 

 

 

 

S 

Read input 
data 

Initialization: 
Hd1d2,,dn = hd1d2..dn, 
Iteration: m = 1 

IPF starts: adjust for 
number of households 
by household size 

Adjust for number of 
households by family 
type 

Adjust for number of 
households by income 
group 

Adjust for population 
by employment status 

Adjust for population 
by age group (children 
0-4, children 5-17, and 
adults) 

Adjust for population 
by race (white, 
African-American, 
Asian, and other race) 

Adjust for population 
with Hispanic origin 

Stop 
condition 

Yes 

No
m = m + 

End 



 14

Spatial Resolution of ACS Estimates 

Issues associated with small area samples in the ACS have been discussed in a number of papers. 

In this section, the focus is on synthesizing the major findings of previous work and linking this 

work to potential issues associated with small area estimation associated with the ACS. Perhaps 

the most relevant of these more recent studies related to small area estimation issues with the 

ACS, is a comparison between the ACS estimates and the Census 2000 estimates.  

 

Estimates were compared across 36 counties and associated census tracts, with the exception of 

two counties in Texas: Harris and Fort Bend. The ACS estimates represent a three-year average 

(1999-2001) while the Census data were collected in 2000. It is important to note that the 

compared estimates do not include basic count data since total population and total number of 

housing units is used to control the ACS population estimates (at the county level only) and 

likewise, 100% weighted Census counts (at roughly equivalent to a census tract) are used to 

control sample estimates. 

 

To compare between the ACS and Census 2000 sample data estimates, standard errors were used 

to statistically evaluate differences. At the county level, a z-score with a Bonferroni adjustment 

was computed and evaluated at the 90% confidence level. At the tract level, calculations were 

made without the Bonferroni adjustment. Note also that larger counties will be more likely to 

have greater statistically significant differences than smaller counties simply as a result of 

sample sizes. 
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In Table 2, a summary of the major findings in Report 8 are presented. The results of the 

comparison indicate that some of the Census variables used to date for activity-based modeling 

may be significantly different from those produced through the ACS. Looking at sex, the results 

indicated that small differences existed between the Census 2000 estimates and the ACS 

estimates, and those differences that did exist were for all practical purposes unimportant (i.e., 

<1%). It is important to remember that many of these variables are also used in the ACS 

weighting process, and age is one such control variable. This means that the ACS estimates are 

forced to agree with census information unless categories are collapsed. So for control variables, 

we would not expect to see big differences. 

 

Significant differences in county level estimates were found for race. Although race is used as a 

population control variable, because of category collapsing the totals are not likely to match. 

Most of the differences were attributable to responses for Hispanic. No significant differences 

were found for average household size, but both total household population and total housing 

units are control variables so it is unlikely there would be major differences. In terms of the 

employment categories, ACS and Census estimates were significantly different. ACS estimates 

were higher for the in-labor force estimates and Census estimates were higher for the not in labor 

force estimates. 

 

In terms of household income, ACS estimates tended to be higher for income categories below 

$50,000 and Census estimates tended to be higher for income categories greater than $50,000. 

However, for practical purposes the differences in the estimates were rarely largely than 2%. In 
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evaluating household size, ACS estimates were generally higher than Census estimates (e.g., 

averaged over all counties, Census household size was 3.14, ACS was 3.16).  

 

More half of the counties had statistically significant differences in mean travel time to work 

estimates. In nearly all counties, the Census 2000 estimates were higher than the ACS estimates, 

with the largest differences appearing in the range of 20 to 30 minute commute times. In terms of 

commute mode, all modes showed significant differences between the census and ACS 

estimates. Census estimates were generally higher for the carpool to work mode while ACS 

estimates were higher for all other modes. In terms of vehicle availability, ACS estimates were 

higher for the no vehicle category and Census estimates were higher for the 3+ vehicle 

categories. There was no statistical difference found for the 2-vehicle category. 

 

The report also evaluated a limited number of transportation relevant variables at the tract level. 

Before reviewing these findings, however, it is important to understand how the ACS data at the 

tract level are weighted. In producing tract estimates, the Census data is weighted at the tract 

level (or sometimes groups of tracts depending on the sample size). In contract, the ACS data are 

weighted at the county level. Obviously, this difference in weighting may be more likely to 

produce larger differences when comparing tract estimates between Census and ACS, but these 

differences may be less likely to produce a statistically significant difference because sample 

sizes are much smaller (and variability much greater).  

 

To compare ACS estimates and Census estimates at the tract level, tracts were divided into five 

groups by population (for greater detail, see Report 8), and some of the observations are 
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interesting. For race, the differences in tracts level estimates generally reflect those found at the 

county level.  

 

For mean travel time to work, a general trend of higher Census estimates was observed, although 

very few of the differences were actually statistically significant. The Census was significantly 

higher for the mid-range household income levels ($25k to $75k); for the remainder of the 

categories, the two estimates were similar.  

 
Table 2. Travel Model Related Findings U.S. Census Bureau: Report 8 (2004) 
Variable  Major Findings  
 County Level (Practical Difference) Tract Level 
Age° ACS ≈ Census 2000  
Race° ACS ≠ Census 2000 ACS ≠ Census 2000 
Household Size ACS ≈ Census 2000  
Employment Status ACS ≠ Census 2000  
Household Income ACS ≠ Census 2000 (<2%) ACS ≠ Census 2000 
Household Size ACS ≠ Census 2000  
Mean Work Travel Time ACS ≠ Census 2000 ACS ≠ Census 2000 
Commute Mode ACS ≠ Census 2000  
Vehicle Availability ACS ≠ Census 2000  
° ACS Control Variable 
 
 
Overall Comment on ACS PUMS for Travel Modeling 
 
There is little doubt that PUMS and Census data plays a key role in activity-based modeling, 

most prominently through the household synthesis process. In the using these data, there are 

hierarchies of zonal systems – mostly constructed as a function of the available data - that 

demand modelers have accommodated in development of models. For example, consider the San 

Francisco model again. The households were synthesized using a data hierarchy that went from 

six PUMAS to 127 Metropolitan Transportation Commission traffic analysis zones to 766 San 
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Francisco Traffic Analysis Zones.  And in the Dallas-Ft. Worth models, there are a total of 1032 

census tracts enclosed by 919 transportation analysis zones.  

 

Bhat et al (2003b) identified three major practical issues associated with using the census or 

PUMS data for household synthesis: the geographic resolution associated with the zone system, 

the need for demographic information at the household and person-level, and finally the issue 

associated with a starting point for the IPF process. 

 

In terms of the geographic resolution, recall that census data are available at the county, tract and 

block levels. When traffic analysis zones and census tracts are roughly comparable, then 

socioeconomic data is readily available. However, households must then be reallocated to TAZs. 

One approach is to estimate a location model that is constrained to the census tract where the 

household resides. However, very few data sets contain both the TAZ and census designation. 

 

The second general problem identified by Bhat relates to whether the household synthesis can be 

performed at the household level or the population level. Ideally, the analysis is conducted at the 

household level retaining information about individuals within the household. In the CEMDAP 

application, the IPF is conducted at the household level using the PUMS sample. Once 

households have been created, individuals are sampled within households again from the PUMS 

data. 

 
Finally, when a household distribution is created, a starting seed distribution is necessary. If the 

census tract is the geographic unit, then ideally the seed distribution at the census tract should be 
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the starting point as well. However, PUMS data can only identified at the county level so in 

essence the seed distribution is taken at the county level.  

 

Most of these basic constraints can be overcome in a practical setting, but almost certain result in 

errors. Although there have been substantiated issues related to small area estimation using the 

ACS, these issues do not seem any more likely to hinder transportation analysts than currently 

used data. Perhaps of equal or greater concern is that key ACS variables defining households 

characteristics may not match census information, and in fact become less reliable as the spatial 

resolution increases. This could present a significant issue in terms of synthesizing households 

that are reasonable approximations of reality. 

 
 
Additional research on the effect of the control variables and variables that are statistically 

significantly different from census information on household synthesis would be very useful. It 

should also be noted that other aspects of the ACS may present difficulties for travel demand 

models, however, these difficulties (e.g., workplace location) will be present regardless of the 

type of model used. Travel forecasters have already adapted methods for using more aggregated 

PUMA information and it is likely that these methods will continue to be applicable when using 

ACS PUMS. One of the issues that will have to be addressed for unique region is whether to use 

census blocks/tracts for household synthesis or county estimates. At the block/tract level ACS 

PUMS may have multiple collapsing of categories due to small sample sizes. This, in turn, can 

impact the socioeconomic characteristics both for the seed distribution as well as the simulated 

households. One line of research that might be useful here is the development of quality 

measures that assess the use of ACS data for multiple category collapsing. For example, 
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Alexander (2001) computed standard errors compared to census standard errors. The ACS 

computed standard errors were approximately 1.33 times as large as those of the census for 

domains with average response rates. However, this estimate can differ greatly depending on the 

domain and non-response. If the quality measure (perhaps based on the coefficient of variation or 

standard errors) is relatively straightforward to compute, it would allow individual regions to 

assess the impact of using various spatial resolutions in their activity-based models, most 

prominently the household synthesis process. 
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